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Sphere packings

Sphere packing: interior disjoint unit spheres.
Density: limsup of the proportion of B(0, r) covered.
Questions: maximum density? densest packings?
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Sphere packings

Sphere packing: interior disjoint unit spheres.
Density: limsup of the proportion of B(0, r) covered.
Questions: maximum density? densest packings?

Theorem (Vyazovska, 2017)

The maximum density of sphere packings in R8 is π4

384 ≈ 0.2536.

It is reached for spheres centered on the E8 lattice.
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Sphere packings

Sphere packing: interior disjoint unit spheres.
Density: limsup of the proportion of B(0, r) covered.
Questions: maximum density? densest packings?

Theorem (Vyazovska et al., 2017)

The maximum density of sphere packings in R24 is π12

12! ≈ 0.0019.

It is reached for spheres centered on the Leech lattice.
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Unequal sphere packings

The density becomes parametrized by the ratios of sphere sizes.
Natural problem in materials science!

Simplest non-trivial case: two discs in R2, i.e., binary disc packings.
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Density of binary disc packings

The maximum density is a function δ(r) of the ratio r ∈ (0, 1).
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Lower bounds

The hexagonal compact packing yields a uniform lower bound.
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Lower bounds

Any given packing yields a lower bound for a specific r .
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Lower bounds

It can be extended over a neighborhood of r (more or less cleverly).
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Upper bounds

First upper bound by Florian in 1960.
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Upper bounds

7
5

First upper bound by Florian in 1960. Improved by Blind in 1969.
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Tight bounds

7
5

Blind’s bound is tight for r ≥
√

7 tan(π/7)−6 tan(π/6)
6 tan(π/6)−5 tan(π/5) ≈ 0.743

6/16



Tight bounds

On the other side: lim
r→0

δ(r) = π
2
√

3
+
(

1− π
2
√

3

)
π

2
√

3
' 0.9913
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Tight bounds

1
23

45
6

7

8

9

The exact maximum density is also known for 9 ”magic” ratios!
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Compact packings

Theorem (Heppes’00, Heppes’03, Kennedy’04, Bédaride-F.’20)

These periodic binary disc packings have maximum density.
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Compact packings

Theorem (Kennedy, 2006)

The ratios are those that allow for a triangulated contact graph.
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Flipping and flowing

The disc ratio of a compact packing is determined by the contacts.

8/16



Flipping and flowing

Allowing some discs to separate may give a degree of freedom. . .
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Flipping and flowing

. . . that can be used to vary continuously the ratio. . .
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Flipping and flowing

. . . until it is blocked by new contacts.
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Flipping and flowing

Some cases may be tricky: how many (which) contacts to keep?
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Lower bounds reloaded

12
3

45

6
7

8

9

Flipping and flowing greatly improves the lower bound.

Is it tight?
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Other dense packings

12
3

45
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8

9

For small ratio, there are many dense packings.
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Other dense packings
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But they seem to become more sparse as the ratio grows.
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Phase separation
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Can we at least do better than the hexagonal compact packing?
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Phase separation

12
3

45

6
7

8

9

Theorem (F., to be improved)

For r ∈ [0.445, 0.514] ∪ [0.566, 0.627] ∪ [0.647, 1), δ(r) = π
2
√

3
.
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Back to materials science

T. Paik, B. Diroll, C. Kagan, Ch. Murray J. Am. Chem. Soc. 137, 2015.
Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
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Phase diagram

E. Fayen, A. Jagannathan, G. Foffi, F. Smallenburg J. Chem. Phys. 152, 2020.
Infinite-pressure phase diagram of binary mixtures of (non)additive hard disks.

I Based on intensive Monte-Carlo simulations;

I The concept of ”phase” needs to be formalized.
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Equivalent disc packings

There is always infinitely many packings with the same density.

We consider them up to almost isomorphism of Voronöı diagrams.
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Playing with stoichiometry for r =
√

2− 1

Theorem (F. 2020)

The densest disc packings with a proportion x of large discs are:
I twinnings of two periodic packings for x ≤ 0.5;

I recodings of square-triangle tilings for x ≥ 0.5.
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Summary & perspectives

I Compact packings are good at maximizing the density;

I Flipping and flowing provides a good way to limit density loss;

I Phase separation (hexagonal packing) is almost characterized.

I Still lot of work to get the whole phase diagram. . .

I Maximum density enforced by attractive forces?

I More discs ?

 D. Pchelina’s lightning talk for 3 discs.

I Higher dimensions (e.g., rock salt)?
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You want proof? I’ll give you proof!

For equal discs, no triangle of a Delaunay triangulation of the
centers can be more dense than the overall maximum density.

This does not holds for unequal discs (remind Florian’s bound).

Principle: show that the denser triangles can transfer enough
”weight” to sparser ones so as to balance the overall density.

In all the proven cases, the transfer can always be made local
(namely between triangles that share a vertex or an edge).

The overall density is bounded by checking inequalities over a
compact set of triangles using computer interval arithmetic.
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